To upload files, please first save the app
import streamlit as st
import pandas as pd
import numpy as np
# Add some text
st.title('Autograder Tracker')
# st.write('Welcome! This is a basic demonstration of Streamlit.')
# # Create some plots
# st.subheader('Line Plot')
# st.line_chart(df.set_index('x'))
cols = st.columns(4)
cols[0].selectbox(
label="Apple Intelligence Feature",
options=["Summarization", "ADM","GP"]
)
cols[1].multiselect(
label="Autograder",
options=["PA prod v1", "SI prod v1", "upload your all autograder(3P only)"]
)
opt1 = cols[2].multiselect(
label="Eval sets",
options=["POEM projects", "Golden set1", "Golden set 2", "upload your own golden set"
]
)
opt1 = cols[3].multiselect(
label="Performance Metric",
options=["POEM projects", "Golden set1", "Golden set 2", "upload your own golden set"
]
)
st.text_input("python code for calculating the validation metrics")
st.title("Autograder Metadata")
json_data = {
"name": "Prompt alignment 3p model",
"description": "prompting Gemini2.0 flash",
"Developer": 'Elsa',
"Deployment date": ["2025-01-01"],
"Prompt": "xxxx",
"Training method": "auto prompting on xx data via Gemini's autoprompting API"
}
# Display JSON in Streamlit
st.json(json_data) # Auto-formatted output
st.title("Autograder validation")
df = pd.DataFrame({
"":["PA prod v1","your own dev model"],
"Autograder=pass&groundtruth=pass": [1, 2],
"Autograder=fail&groundtruth=fail": [3, 4],
"Autograder=fail&groundtruth=pass": [1, 2],
"Autograder=pass&groundtruth=fail": [3, 4]
})
st.write("Structure Integrity:")
st.dataframe(df)
st.write("Prompt Alignment:")
st.dataframe(df)
st.write("Aggregated:")
st.code("combind=df.auto_pa+df.auto_si+df.he_IC",language="python")
st.dataframe(df)
# st.subheader('Area Chart')
# st.area_chart(df.set_index('x'))
# # Add interactive elements
# st.subheader('Interactive Elements')
# name = st.text_input('Enter your name')
# if name:
# st.write(f'Hello {name}!')
st.title("Product performance tracking")
df2 = pd.DataFrame({
"Target model version": ["AFM_v6", "AFM_v7"],
"Pass rate": [0.82, 0.9]
})
cols = st.columns(2)
cols[0].multiselect(
label="Target Model Eval sets",
options=["POEM projects", "Golden set1", "Golden set 2", "upload your own golden set"
]
)
cols[1].multiselect(
label="Target Model Performance Metric",
options=["POEM projects", "Golden set1", "Golden set 2", "upload your own golden set"
]
)
st.dataframe(df2)
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?