Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import altair as alt
import numpy as np
@st.cache_data
def load_data(url):
return pd.read_csv(url)
# App layout
st.title("CSV Data Viewer & Visualizer")
# URL input
url = st.text_input(
"Enter CSV URL",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
try:
# Load data
df = load_data(url)
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input("Number of rows to display",
min_value=1,
max_value=len(df),
value=min(10, len(df)))
with col2:
shuffle = st.checkbox("Randomly shuffle data")
if shuffle:
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
# Display dataframe
st.subheader("Data Preview")
st.dataframe(df.head(n_rows))
# Variable selection for visualization
st.subheader("Data Visualization")
# Get numeric and categorical columns
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(exclude=[np.number]).columns.tolist()
all_cols = numeric_cols + categorical_cols
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox("Select first variable", all_cols, index=0)
with col2:
var2 = st.selectbox("Select second variable (optional)",
["None"] + all_cols,
index=0)
# Create visualization based on selected variables
if var2 == "None":
# Single variable visualization
if var1 in numeric_cols:
# For numeric variables, show histogram
chart = alt.Chart(df).mark_bar().encode(
alt.X(f"{var1}:Q", bin=True),
y='count()',
tooltip=['count()']
).properties(
title=f"Distribution of {var1}"
)
else:
# For categorical variables, show bar chart
chart = alt.Chart(df).mark_bar().encode(
x=alt.X(f"{var1}:N"),
y='count()',
tooltip=['count()']
).properties(
title=f"Distribution of {var1}"
)
else:
# Two variable visualization
if var1 in numeric_cols and var2 in numeric_cols:
# Both numeric: scatter plot
chart = alt.Chart(df).mark_circle().encode(
x=f"{var1}:Q",
y=f"{var2}:Q",
tooltip=[var1, var2]
).properties(
title=f"{var1} vs {var2}"
)
elif var1 in numeric_cols and var2 in categorical_cols:
# Numeric + Categorical: box plot
chart = alt.Chart(df).mark_boxplot().encode(
x=f"{var2}:N",
y=f"{var1}:Q"
).properties(
title=f"{var1} by {var2}"
)
elif var1 in categorical_cols and var2 in numeric_cols:
# Categorical + Numeric: box plot
chart = alt.Chart(df).mark_boxplot().encode(
x=f"{var1}:N",
y=f"{var2}:Q"
).properties(
title=f"{var2} by {var1}"
)
else:
# Both categorical: heatmap
chart = alt.Chart(df).mark_rect().encode(
x=f"{var1}:N",
y=f"{var2}:N",
color='count()',
tooltip=[var1, var2, 'count()']
).properties(
title=f"{var1} vs {var2}"
)
st.altair_chart(chart, use_container_width=True)
except Exception as e:
st.error(f"Error: {str(e)}")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?