Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(page_title="CSV Data Visualizer", layout="wide")
@st.cache_data
def load_data(url):
"""Load and cache CSV data from URL"""
try:
df = pd.read_csv(url)
return df, None
except Exception as e:
return None, str(e)
def get_column_type(series):
"""Determine if a column is numeric or categorical"""
if pd.api.types.is_numeric_dtype(series):
return 'numeric'
else:
return 'categorical'
def create_visualization(df, var1, var2=None):
"""Create appropriate visualization based on variable types"""
if var2 is None:
# Single variable visualization
col_type = get_column_type(df[var1])
if col_type == 'numeric':
# Histogram for numeric variables
fig = px.histogram(df, x=var1, title=f'Distribution of {var1}')
else:
# Bar chart for categorical variables
value_counts = df[var1].value_counts()
fig = px.bar(x=value_counts.index, y=value_counts.values,
title=f'Count of {var1}')
fig.update_xaxis(title=var1)
fig.update_yaxis(title='Count')
else:
# Two variable visualization
var1_type = get_column_type(df[var1])
var2_type = get_column_type(df[var2])
if var1_type == 'numeric' and var2_type == 'numeric':
# Scatter plot for two numeric variables
fig = px.scatter(df, x=var1, y=var2, title=f'{var1} vs {var2}')
elif var1_type == 'categorical' and var2_type == 'categorical':
# Heatmap for two categorical variables
crosstab = pd.crosstab(df[var1], df[var2])
fig = px.imshow(crosstab, title=f'{var1} vs {var2}',
labels=dict(x=var2, y=var1, color="Count"))
else:
# Box plot for numeric vs categorical
if var1_type == 'numeric':
fig = px.box(df, x=var2, y=var1, title=f'{var1} by {var2}')
else:
fig = px.box(df, x=var1, y=var2, title=f'{var2} by {var1}')
return fig
# Main app
st.title("CSV Data Visualizer")
st.markdown("Load CSV data from a URL and create interactive visualizations")
# URL input
url = st.text_input(
"Enter CSV URL:",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
if url:
# Load data
df, error = load_data(url)
if error:
st.error(f"Error loading data: {error}")
elif df is not None:
st.success(f"Data loaded successfully! Shape: {df.shape}")
# Controls
col1, col2 = st.columns(2)
with col1:
# Number of rows control
max_rows = len(df)
num_rows = st.slider("Number of rows to display:",
min_value=1, max_value=max_rows, value=min(100, max_rows))
with col2:
# Shuffle checkbox
shuffle = st.checkbox("Randomly shuffle DataFrame")
# Apply controls
display_df = df.copy()
if shuffle:
display_df = display_df.sample(frac=1).reset_index(drop=True)
display_df = display_df.head(num_rows)
# Display DataFrame
st.subheader("Data Preview")
st.dataframe(display_df, use_container_width=True)
# Data info
st.subheader("Dataset Information")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Rows", len(df))
with col2:
st.metric("Total Columns", len(df.columns))
with col3:
st.metric("Missing Values", df.isnull().sum().sum())
# Variable selection for visualization
st.subheader("Data Visualization")
# Get column names and types
columns = df.columns.tolist()
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox("Select first variable:", options=columns)
with col2:
var2 = st.selectbox("Select second variable (optional):",
options=["None"] + columns, index=0)
if var2 == "None":
var2 = None
# Create and display visualization
if var1:
try:
fig = create_visualization(df, var1, var2)
st.plotly_chart(fig, use_container_width=True)
# Display summary statistics
st.subheader("Summary Statistics")
if var2:
selected_cols = [var1, var2]
else:
selected_cols = [var1]
# Show statistics for selected variables
for col in selected_cols:
if get_column_type(df[col]) == 'numeric':
st.write(f"**{col} (Numeric)**")
st.write(df[col].describe())
else:
st.write(f"**{col} (Categorical)**")
st.write(df[col].value_counts().head(10))
st.write("---")
except Exception as e:
st.error(f"Error creating visualization: {str(e)}")
# Data types info
with st.expander("Column Data Types"):
col_info = pd.DataFrame({
'Column': df.columns,
'Data Type': df.dtypes.astype(str),
'Non-Null Count': df.count(),
'Null Count': df.isnull().sum()
})
st.dataframe(col_info, use_container_width=True)
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?