Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
@st.cache_data
def load_data(url):
# NOTE: Using corsproxy.io because we're in a WASM environment. If running locally,
# you can remove the corsproxy.io prefix. Some websites don't work with the proxy,
# in those cases try removing the proxy prefix.
url = f"https://corsproxy.io/?{url}" if not url.startswith("https://corsproxy.io") else url
return pd.read_csv(url)
# URL input with default value
url = st.text_input(
"Enter CSV URL",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
try:
# Load the data
df = load_data(url)
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input("Number of rows to display", min_value=1, max_value=len(df), value=min(10, len(df)))
with col2:
shuffle = st.checkbox("Randomly shuffle data")
if shuffle:
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
# Display the dataframe
st.dataframe(df.head(n_rows))
# Variable selection
st.subheader("Visualization")
columns = df.select_dtypes(include=[np.number, 'object', 'category']).columns
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox("Select first variable", columns)
with col2:
remaining_cols = [col for col in columns if col != var1]
var2 = st.selectbox("Select second variable (optional)", ["None"] + list(remaining_cols))
# Visualization logic
if var2 == "None":
# Single variable visualization
if df[var1].dtype in [np.number]:
# Numerical: show histogram
fig = px.histogram(df, x=var1, title=f"Distribution of {var1}")
else:
# Categorical: show bar chart
fig = px.bar(
df[var1].value_counts().reset_index(),
x="index",
y=var1,
title=f"Count of {var1}"
)
else:
# Two variable visualization
if df[var1].dtype in [np.number] and df[var2].dtype in [np.number]:
# Both numerical: scatter plot
fig = px.scatter(df, x=var1, y=var2, title=f"{var2} vs {var1}")
elif df[var1].dtype in [np.number] and df[var2].dtype not in [np.number]:
# One numerical, one categorical: box plot
fig = px.box(df, x=var2, y=var1, title=f"Distribution of {var1} by {var2}")
elif df[var1].dtype not in [np.number] and df[var2].dtype in [np.number]:
# One categorical, one numerical: box plot
fig = px.box(df, x=var1, y=var2, title=f"Distribution of {var2} by {var1}")
else:
# Both categorical: heatmap
heatmap_data = pd.crosstab(df[var1], df[var2])
fig = px.imshow(
heatmap_data,
title=f"Relationship between {var1} and {var2}",
labels=dict(x=var2, y=var1, color="Count")
)
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"Error: {str(e)}")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?