Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
# Cache the data loading
@st.cache_data
def load_data(url):
# NOTE: Using corsproxy.io because we're in a WASM environment. If running locally,
# you can remove the corsproxy.io prefix. Some websites don't work with the proxy,
# in those cases try removing the proxy prefix.
if not url.startswith('https://corsproxy.io/?'):
url = f'https://corsproxy.io/?{url}'
return pd.read_csv(url)
# Main app
st.title('CSV Data Viewer and Visualizer')
# URL input
url = st.text_input(
'Enter CSV URL',
value='https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv'
)
try:
# Load data
df = load_data(url)
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input('Number of rows to display',
min_value=1,
max_value=len(df),
value=min(10, len(df)))
with col2:
shuffle = st.checkbox('Randomly shuffle data')
# Shuffle if requested
if shuffle:
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
# Display dataframe
st.subheader('Data Preview')
st.dataframe(df.head(n_rows))
# Variable selection for visualization
st.subheader('Data Visualization')
# Get numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
# Variable selection
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox('Select first variable', df.columns)
with col2:
var2 = st.selectbox('Select second variable (optional)',
['None'] + df.columns.tolist())
# Create visualization based on selection
if var2 == 'None':
# Single variable visualization
if df[var1].dtype in [np.number]:
# Numeric: show histogram
fig = px.histogram(df, x=var1, title=f'Distribution of {var1}')
else:
# Categorical: show bar chart
counts = df[var1].value_counts()
fig = px.bar(x=counts.index, y=counts.values,
title=f'Distribution of {var1}')
else:
# Two variable visualization
if df[var1].dtype in [np.number] and df[var2].dtype in [np.number]:
# Both numeric: scatter plot
fig = px.scatter(df, x=var1, y=var2,
title=f'{var2} vs {var1}')
elif df[var1].dtype in [np.number]:
# First numeric, second categorical: box plot
fig = px.box(df, x=var2, y=var1,
title=f'{var1} by {var2}')
elif df[var2].dtype in [np.number]:
# First categorical, second numeric: box plot
fig = px.box(df, x=var1, y=var2,
title=f'{var2} by {var1}')
else:
# Both categorical: heatmap
heatmap_data = pd.crosstab(df[var1], df[var2])
fig = px.imshow(heatmap_data,
title=f'Relationship between {var1} and {var2}')
st.plotly_chart(fig)
except Exception as e:
st.error(f'Error: {str(e)}')
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?