Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
# Cache the data loading
@st.cache_data
def load_data(url):
# NOTE: Using corsproxy.io because we're in a WASM environment. If running locally,
# you can remove the corsproxy.io prefix. Some websites don't work with the proxy,
# in those cases try removing the proxy prefix.
if not url.startswith('https://corsproxy.io/?'):
url = f'https://corsproxy.io/?{url}'
return pd.read_csv(url)
# App title
st.title("Data Visualization App")
# URL input
url = st.text_input(
"Enter CSV URL",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
try:
# Load data
df = load_data(url)
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input("Number of rows to display",
min_value=1,
max_value=len(df),
value=min(10, len(df)))
with col2:
shuffle = st.checkbox("Randomly shuffle data")
if shuffle:
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
# Display the dataframe
st.subheader("Data Preview")
st.dataframe(df.head(n_rows))
# Variable selection
st.subheader("Visualization")
# Get numeric and categorical columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
all_cols = df.columns
# Variable selection
var1 = st.selectbox("Select first variable", all_cols)
var2 = st.selectbox("Select second variable (optional)",
["None"] + list(all_cols),
index=0)
if var2 == "None":
# Single variable visualization
if df[var1].dtype in [np.number]:
# Numeric: show histogram
fig = px.histogram(df, x=var1, title=f"Distribution of {var1}")
else:
# Categorical: show bar chart
counts = df[var1].value_counts()
fig = px.bar(x=counts.index,
y=counts.values,
title=f"Count of {var1}")
else:
# Two variable visualization
if df[var1].dtype in [np.number] and df[var2].dtype in [np.number]:
# Both numeric: scatter plot
fig = px.scatter(df, x=var1, y=var2,
title=f"{var2} vs {var1}")
elif df[var1].dtype in [np.number]:
# First numeric, second categorical: box plot
fig = px.box(df, x=var2, y=var1,
title=f"Distribution of {var1} by {var2}")
elif df[var2].dtype in [np.number]:
# First categorical, second numeric: box plot
fig = px.box(df, x=var1, y=var2,
title=f"Distribution of {var2} by {var1}")
else:
# Both categorical: heatmap
contingency = pd.crosstab(df[var1], df[var2])
fig = px.imshow(contingency,
title=f"Relationship between {var1} and {var2}")
st.plotly_chart(fig)
except Exception as e:
st.error(f"Error: {str(e)}")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?