Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
# Cache the data loading
@st.cache_data
def load_data(url):
try:
# NOTE: Using corsproxy.io because we're in a WASM environment. If running locally,
# you can remove the corsproxy.io prefix. Some websites don't work with the proxy,
# in those cases try removing the proxy prefix.
proxy_url = f"https://corsproxy.io/?{url}"
return pd.read_csv(proxy_url)
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return None
# App title
st.title("Data Visualization App")
# URL input
url = st.text_input(
"Enter CSV URL",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
if url:
# Load the data
df = load_data(url)
if df is not None:
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input("Number of rows to display",
min_value=1,
max_value=len(df),
value=min(10, len(df)))
with col2:
shuffle = st.checkbox("Randomly shuffle data")
if shuffle:
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
# Display the dataframe
st.subheader("Data Preview")
st.dataframe(df.head(n_rows))
# Variable selection for visualization
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(exclude=[np.number]).columns.tolist()
all_cols = numeric_cols + categorical_cols
st.subheader("Visualization")
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox("Select first variable", all_cols)
with col2:
remaining_cols = [col for col in all_cols if col != var1]
var2 = st.selectbox("Select second variable (optional)",
["None"] + remaining_cols)
# Determine the best visualization based on variable types
if var2 == "None":
if var1 in numeric_cols:
# For numeric variables, show histogram
fig = px.histogram(df, x=var1, title=f"Distribution of {var1}")
st.plotly_chart(fig)
else:
# For categorical variables, show bar chart
counts = df[var1].value_counts()
fig = px.bar(x=counts.index, y=counts.values,
title=f"Distribution of {var1}")
st.plotly_chart(fig)
else:
if var1 in numeric_cols and var2 in numeric_cols:
# Scatter plot for two numeric variables
fig = px.scatter(df, x=var1, y=var2,
title=f"{var2} vs {var1}")
st.plotly_chart(fig)
elif var1 in numeric_cols and var2 in categorical_cols:
# Box plot for numeric vs categorical
fig = px.box(df, x=var2, y=var1,
title=f"{var1} by {var2}")
st.plotly_chart(fig)
elif var1 in categorical_cols and var2 in numeric_cols:
# Box plot for numeric vs categorical
fig = px.box(df, x=var1, y=var2,
title=f"{var2} by {var1}")
st.plotly_chart(fig)
else:
# Heatmap for two categorical variables
contingency = pd.crosstab(df[var1], df[var2])
fig = px.imshow(contingency,
title=f"Relationship between {var1} and {var2}")
st.plotly_chart(fig)
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?