Create a Streamlit application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame The app should also allow plotting the entire CSV. Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import altair as alt
st.title("Penguin Data Visualization")
# Text field for URL input
url = st.text_input("Enter URL for the CSV file:", "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv")
@st.cache_data
def load_data(url):
return pd.read_csv(url)
# Load the data
try:
df = load_data(url)
st.write(f"Data loaded from: {url}")
except Exception as e:
st.error(f"Error loading data: {e}")
df = pd.DataFrame() # Create an empty DataFrame to handle failure
# Control for number of rows displayed
num_rows = st.slider("Select number of rows to display:", 1, 100, 10)
if not df.empty:
st.write(df.head(num_rows))
# Checkbox to randomly shuffle DataFrame
shuffle = st.checkbox("Shuffle DataFrame")
if shuffle:
df = df.sample(frac=1).reset_index(drop=True)
st.write("DataFrame has been shuffled.")
# Allow user to select columns for plotting
if not df.empty:
variables = df.columns.tolist()
x_axis = st.selectbox("Select variable for X-axis:", options=variables)
y_axis = st.selectbox("Select variable for Y-axis:", options=variables, index=1)
# Determine visualization type
if df[x_axis].dtype in ["int64", "float64"] and df[y_axis].dtype in ["int64", "float64"]:
chart = alt.Chart(df).mark_circle(size=60).encode(
x=x_axis,
y=y_axis,
tooltip=list(variables)
).interactive()
st.altair_chart(chart, use_container_width=True)
else:
st.warning("Select numeric variables for both axes for scatter plot.")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?