Create a Streamlit application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame The app should also allow plotting the entire CSV. Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Function to load data
@st.cache_data
def load_data(url):
return pd.read_csv(url)
st.title("Penguins Data Viewer")
# URL input
url = st.text_input("Enter the URL of the CSV file:",
"https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv")
# Load the data
try:
data = load_data(url)
st.write("Data loaded successfully!")
st.dataframe(data)
except Exception as e:
st.error(f"Error loading data: {e}")
# Controls for displaying the data
num_rows = st.slider("Select number of rows to display:", 1, len(data), 5)
shuffle = st.checkbox("Shuffle DataFrame")
# Shuffle data if checkbox is selected
if shuffle:
data = data.sample(frac=1).reset_index(drop=True)
# Display the selected number of rows
st.write(data.head(num_rows))
# Plotting controls
st.subheader("Plotting")
variables = data.columns.tolist()
selected_vars = st.multiselect("Select one or two variables to plot:", variables)
if len(selected_vars) == 1:
# Scatter plot for single variable
sns.histplot(data[selected_vars[0]], kde=True)
plt.title(f'Histogram of {selected_vars[0]}')
st.pyplot(plt)
elif len(selected_vars) == 2:
# Scatter plot for two variables
sns.scatterplot(data=data, x=selected_vars[0], y=selected_vars[1])
plt.title(f'Scatter plot of {selected_vars[0]} vs {selected_vars[1]}')
st.pyplot(plt)
else:
st.info("Please select one or two variables to plot.")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?