Create a Streamlit application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame The app should also allow plotting the entire CSV. Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
# Caching the CSV data
@st.cache_data
def load_data(url):
return pd.read_csv(url)
# App title
st.title('Penguins Data Viewer')
# Input text field for URL
url = st.text_input('Enter the URL of the CSV file:',
value='https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv')
# Load the data
try:
data = load_data(url)
st.write(data)
except Exception as e:
st.error(f'Error loading data: {e}')
# Control for number of rows displayed
num_rows = st.number_input('Select number of rows to display:', min_value=1,
max_value=len(data), value=10)
# Checkbox to shuffle the DataFrame
shuffle = st.checkbox('Shuffle the DataFrame')
if shuffle:
data = data.sample(frac=1).reset_index(drop=True)
# Display selected number of rows
st.write(data.head(num_rows))
# Variables selection for plotting
st.subheader('Plotting Variables')
variables = data.columns.tolist()
selected_vars = st.multiselect('Select one or two variables for plotting:', variables)
# Plotting logic
if len(selected_vars) > 0:
if len(selected_vars) == 1:
# Plotting single variable histogram
plt.figure(figsize=(8,6))
plt.hist(data[selected_vars[0]].dropna(), bins=20, color='skyblue', edgecolor='black')
plt.title(f'Histogram of {selected_vars[0]}')
plt.xlabel(selected_vars[0])
plt.ylabel('Frequency')
st.pyplot(plt)
elif len(selected_vars) == 2:
# Plotting scatter plot for two variables
plt.figure(figsize=(8,6))
plt.scatter(data[selected_vars[0]], data[selected_vars[1]], alpha=0.6)
plt.title(f'Scatter plot of {selected_vars[0]} vs. {selected_vars[1]}')
plt.xlabel(selected_vars[0])
plt.ylabel(selected_vars[1])
st.pyplot(plt)
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?