import streamlit as st import pandas as pd from sklearn.linear_model import LinearRegression df = pd.read_csv("D:/users/acsilva/Downloads/pizza.csv") modelo = LinearRegression() x = df[["diametro"]] y = df[["preco"]] st.title("Prevendo o valor de uma pizza")
Drop files here
or click to upload
import streamlit as st
import pandas as pd
from sklearn.linear_model import LinearRegression
# Creating sample pizza data since we don't have access to the original file
df = pd.DataFrame({
'diametro': [20, 25, 30, 35, 40, 45],
'preco': [30, 45, 60, 75, 90, 105]
})
# Training the model
modelo = LinearRegression()
X = df[['diametro']]
y = df[['preco']]
modelo.fit(X, y)
# Streamlit app
st.title("Prevendo o valor de uma pizza")
st.write("Este app prevê o preço de uma pizza baseado no seu diâmetro.")
# Input for diameter
diametro = st.slider("Selecione o diâmetro da pizza (cm)",
min_value=10,
max_value=50,
value=25)
# Making prediction
preco_previsto = modelo.predict([[diametro]])[0][0]
# Showing results
st.write(f"O preço previsto para uma pizza de {diametro}cm é: R$ {preco_previsto:.2f}")
# Showing the data
st.subheader("Dados utilizados para treinamento")
st.table(df)
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?