Create an application that has a text field to enter a URL (default value: https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv). The app should read the CSV file (and cache it) from the URL and display a DataFrame. Add controls to do the following: - Control how many rows are displayed - A checkbox to determine to randomly shuffle the DataFrame Users select one or two variables and you must determine the best way to visualize them.
To upload files, please first save the app
import streamlit as st
import pandas as pd
import altair as alt
import numpy as np
@st.cache_data
def load_data(url):
return pd.read_csv(url)
# URL input with default value
url = st.text_input(
"Enter CSV URL",
value="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
)
try:
# Load the data
df = load_data(url)
# Controls
col1, col2 = st.columns(2)
with col1:
n_rows = st.number_input("Number of rows to display",
min_value=1,
max_value=len(df),
value=min(10, len(df)))
with col2:
shuffle = st.checkbox("Randomly shuffle data")
# Shuffle if requested
if shuffle:
df = df.sample(frac=1).reset_index(drop=True)
# Display the dataframe
st.dataframe(df.head(n_rows))
# Variable selection for visualization
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
all_cols = pd.Index(list(numeric_cols) + list(categorical_cols))
col1, col2 = st.columns(2)
with col1:
var1 = st.selectbox("Select first variable", all_cols)
with col2:
remaining_cols = all_cols.drop(var1)
var2 = st.selectbox("Select second variable (optional)",
['None'] + list(remaining_cols))
# Visualization
if var2 == 'None':
# Single variable visualization
if var1 in numeric_cols:
# Histogram for numeric variables
chart = alt.Chart(df).mark_bar().encode(
alt.X(f"{var1}:Q", bin=True),
y='count()'
).properties(
title=f"Distribution of {var1}"
)
else:
# Bar chart for categorical variables
chart = alt.Chart(df).mark_bar().encode(
x=alt.X('count():Q'),
y=alt.Y(f"{var1}:N", sort='-x')
).properties(
title=f"Distribution of {var1}"
)
else:
# Two variable visualization
if var1 in numeric_cols and var2 in numeric_cols:
# Scatter plot for two numeric variables
chart = alt.Chart(df).mark_circle().encode(
x=f"{var1}:Q",
y=f"{var2}:Q"
).properties(
title=f"{var2} vs {var1}"
)
elif var1 in numeric_cols and var2 in categorical_cols:
# Box plot for numeric vs categorical
chart = alt.Chart(df).mark_boxplot().encode(
x=f"{var2}:N",
y=f"{var1}:Q"
).properties(
title=f"{var1} by {var2}"
)
elif var1 in categorical_cols and var2 in numeric_cols:
# Box plot for numeric vs categorical
chart = alt.Chart(df).mark_boxplot().encode(
x=f"{var1}:N",
y=f"{var2}:Q"
).properties(
title=f"{var2} by {var1}"
)
else:
# Heatmap for two categorical variables
chart = alt.Chart(df).mark_rect().encode(
x=f"{var1}:N",
y=f"{var2}:N",
color='count()'
).properties(
title=f"Relationship between {var1} and {var2}"
)
st.altair_chart(chart, use_container_width=True)
except Exception as e:
st.error(f"Error: {str(e)}")
Hi! I can help you with any questions about Streamlit and Python. What would you like to know?